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Background



Do agents need causal world models?

Enable strong generalisation &
transfer learning
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Needed for decision-making and
planning

Humans use causal models

Hard to learn

Seem unnecessarily powerful
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What data I1s needed to produce a robust and ethical large language model?

Causal world model necessary for robust generalization
(causal discovery literature establishes when possible to learn)
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Generalisation



Medical assistant
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Trained on symptoms, treatment, ground
truth labels for actual disease

Will It generalise correctly?




Medical assistant

Trained on symptoms, treatment, ground \ ”, distribution

truth labels for actual disease o
Take painkillers Always takes

Will it generalise correctly? . . painkillers because
° g when feeling sick recurring headaches



Towards Causal Representation Learning

Causal perspective on out-of-distribution Scholkopf ot al, 2021
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Data generated by interacting causal

mechanisms (some latent)

Symptoms Distributional shift = change to some causal

mechanisms = (soft) interventions o

Generalisation may be possible as only
\ Data / small subset of mechanisms affected




Key question Causal world model necessary for robust
generalisation?

lllllllllllllllllll

EDemographics

G Prescribe
painkiller

llllllllllllllllll

Painkiller

Disease

Symptoms

\ Data




Modeling Agents w/ Influence Diagrams osoning Sho o ssy Ingames
Demographics . "
O Lainkiller
4 O

K . |

| TE——
*Painkiller

4 \

Disease

Diagnosis

Symptoms Ground truth reward:

diagnosis = disease?
\ Data /

00V




Main result



Causal Learning Theorem

Theorem: Assume agent
satisfies regret bound for all

. - : " o o o - Demographics O Prescribe
local™ interventions o on any xR bainkiller
variable V. Then we can learn an : '
approximation of the underlying
Causal Bayesian Network (CBN)
from the agent’s policy.
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As regret - O (optimal agents),
we recover the true underlying
CBN exactly. Disease

Diagnosis

-
Symptoms

* local intervention is soft intervention

Independent of other variables in the \ Data 0 Q

model

E.g. adding noise, X > X + € Reward (R)



Key question revisited Causal world model necessary tor robust
generalisation?
............... YES
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Other perspectives



Transfer lea rning Based on data from source domain and a small amount of (often
unlabeled) data from the target domain produce a bounded regret policy
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Transfer learning contains a hidden causal discovery problem



On Pearl’s Hierarchy and the
Foundations of Causal Inference
Barenboim et al, 2020

Pear|l Causal Hierarchy

L1, L2, L3 languages for § e
expressing questions at different
levels of Pearl’s causal hierarchy,
e.g. P(y | do(X)) € L2

Barenboim et al:
Almost always L1 C L2 C L3



Pear|l Causal Hierarchy

L1, L2, L3 languages for
expressing questions at different
levels of Pearl’s causal hierarchy,
e.g. P(y | do(X)) € L2

Barenboim et al:
Almost always L1 C L2 C L3

For some task R (e.g. diagnosis),
let R2 be queries about optimal
policy under intervention o.

Easy tosee R2 © L2

Causal learning theorem:
R2 =L2

|3 - What if? Why?

On Pearl’s Hierarchy and the
Foundations of Causal Inference
Barenboim et al, 2020



Conclusions



Conseqguences

e, Ben.

Data AGlI (conjecture)
e Causal identifiability applies e Robustness => e Robust agents can
to training agents: impossible General competence understand harm,
to learn causal model => manipulation, ...
Impossible to generalize! e Reasonable to ascribe intent

e Rich training distributions
Incentivise learning causal
model



Future work:

e Concrete data implications

e Eliciting causal world models

frOm agentS Jon Richens Tom Everitt
Google DeepMind Google DeepMind

e Mapping capabillities to the
causal hierarchy

-
\
% P,
\
I G
,}

Ryan Carey James Fox Lewis Hammond g Hyland

Alvin Anestrand Cristina
. . Oxford Oxford Oxtord Oxford Chalmers Garbacea
Paper and slides: x- ==z, Chicago

causalincentives.com

Matt MacDermott Francis Rhys Ward

| | ) Sebastian Milad Damiano You
Imperial mperia Benthall Kazemi Fornasiere
New York King's University of

University College Barcelona


http://causalincentives.com

