

Robust agents learn causal world models

Presenter: Tom Everitt Authors: Jon Richens, Tom Everitt

ICLR May 7, 2024

Jon Richens Google DeepMind

Working on AGI Safety and Alignment:

How can we anticipate and mitigate risks from powerful future Al systems

Tom Everitt Google DeepMind

Causal Incentives Working Group causalincentives.com

Oxford

Oxford

Lewis Hammond Oxford

Sebastian Benthall New York University

David Hyland Oxford

Milad Kazemi King's College

Alvin Ånestrand Chalmers

Damiano Fornasiere University of Barcelona

Background

Do agents need causal world models?

Yes

Enable strong generalisation & transfer learning

Needed for decision-making and planning

Humans use causal models

No

Hard to learn

Seem unnecessarily powerful

SOTA without explicit causal models

(causal discovery literature establishes when possible to learn)

Generalisation

Medical assistant

Trained on symptoms, treatment, ground truth labels for actual disease Will it generalise correctly?

Medical assistant

Trained on symptoms, treatment, ground truth labels for actual disease Will it generalise correctly?

Take painkillers when feeling sick

Always takes painkillers because recurring headaches

distribution

Causal perspective on out-of-distribution generalisation

Towards Causal Representation Learning Scholkopf et al, 2021

Key question

Modeling Agents w/ Influence Diagrams

Reasoning about causality in games Hammond et al, 2023

Main result

Causal Learning Theorem

Theorem: Assume agent satisfies regret bound for all local* interventions σ on any variable V. Then we can learn an approximation of the underlying Causal Bayesian Network (CBN) from the agent's policy.

As regret \rightarrow 0 (optimal agents), we recover the true underlying CBN exactly.

* local intervention is soft intervention independent of other variables in the model

E.g. adding noise, $X \rightarrow X + \varepsilon$

Reward (R)

Key question revisited

Causal world model necessary for robust generalisation?

Other perspectives

Transfer learning

Transfer learning contains a hidden causal discovery problem

Based on data from source domain and a small amount of (often unlabeled) data from the target domain produce a bounded regret policy for target domain

Causal learning theorem: CBN identifiable from D_{source} + { D_{target} }_{target} ∈ Target

Pearl Causal Hierarchy

L1, L2, L3 languages for expressing questions at different levels of Pearl's causal hierarchy, e.g. $P(y \mid do(X)) \in L2$

Barenboim et al: Almost always $L1 \subset L2 \subset L3$

On Pearl's Hierarchy and the Foundations of Causal Inference Barenboim et al, 2020

Pearl Causal Hierarchy

L1, L2, L3 languages for expressing questions at different levels of Pearl's causal hierarchy, e.g. $P(y \mid do(X)) \in L2$

Barenboim et al: Almost always $L1 \subset L2 \subset L3$

For some task R (e.g. diagnosis), let R2 be queries about optimal policy under intervention σ .

Easy to see R2 \subseteq L2

Causal learning theorem: R2 = L2

On Pearl's Hierarchy and the Foundations of Causal Inference Barenboim et al, 2020

Conclusions

Consequences

Data

- Causal identifiability applies to training agents: impossible to learn causal model => impossible to generalize!
- Rich training distributions incentivise learning causal model

AGI (conjecture)

Robustness =>
General competence

Ethics

- Robust agents can understand harm, manipulation, ...
- Reasonable to ascribe intent

Future work: • Concrete data implications

- Eliciting causal world models from agents
- Mapping capabilities to the causal hierarchy

Paper and slides: <u>causalincentives.com</u>

Jon Richens Google DeepMind

James Fox Oxford

Matt MacDermott Francis Rhys Ward Imperial Imperial

Tom Everitt Google DeepMind

Lewis Hammond Oxford

Sebastian Benthall New York University

David Hyland Oxford

Milad Kazemi King's College

Alvin Ånestrand Chalmers

Damiano Fornasiere University of Barcelona

